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To those who tried to make ME320 lab better



Preface

"I want to know something about everything after I start my career as a system engineer" said Cait-

lyn when we were chatting while doing a convection experiment in ME320 heat transfer lab. Her

words somehow tug at my heartstrings as that was one of my goals when I started my journey as a

naive Ph.D. student. After 5 years into my Ph.D. program, I am still not confident that I know enough

to know everything. My failure of growing into a knowledgeable researcher might be attributed to

my consistent tendency of being attracted by random things. I still waste half of my day sometimes

skimming through previews of science/math books on amazon just because I found the titles suit my

mood.

It was my job as a lab TA that forced me to unite all the random things in my mind, and recast

them into complete stories. My original plan was just to make one or two notes for students who are

not able to attend my sessions due to their exposure to COVID. In order to keep myself focused dur-

ing the writing process, some impractical thought experiments are inevitably added in the first two

notes. Unexpectedly, I found myself learning new things organically by developing "stories" in the

notes. Things that were never mentioned in my undergrad/Ph.D. classes suddenly become indispens-

able to deliver vivid explanations of physical phenomena. That was the moment when I decided to

finish the notes for all the labs, and see what else I can bring to the table where people are bored of

learning things off textbooks.

The notes shown here defines the best part of me both as a learner and as a researcher. Writing

them is a journey of self-redemption during which I proved, at least to myself, that I might be able

to derive and create cool things by using simple mathematical language and intuitions of my own.

I want to give my special thinks to some of my committed students: Rena Kanegae, Caitlyn Peters,

Stefan Kamzol, Ashish Mittal, Haley Middendorf, and Nathan Asad for their thought-provoking ques-

tions and suggestions to the labs. And I will never forget the kind comments from Dr. Hongliang

Qian and my buddy Arjun Sanjay Goswami.

–Sizhe Liu,

UIUC



Lab1 Temperature Measurements

Any knowledge that doesn’t lead to new questions quickly
dies out: it fails to maintain the temperature required
for sustaining life.---Wislawa Szymborska

This note is mainly about how we understand the concept of

"temperature" in modern scientific discussion, and the tools for mea-

suring temperature. For practical-oriented minds, the second sec-

tion lists advantages and disadvantages of different tools, and the

scenarios that would best fit the uses of various tools.

1.1 Temperature as a Measurement of Kinetic Energy

If you ask a random student of physical science disciplines what

is temperature exactly, the answer would likely be "indicator of av-

erage kinetic energy of particles". This argument was first implied by

Swiss Physicist Danial Bernoulli in his 1738 paper 1. But it was not 1 Daniel Bernoulli. Hydrody-
namica. Dulsecker. Consultable en
ligne http://imgbase-scd-ulp. u-strasbg.
fr/displayimage. php, 1738

widely accepted during 18th century as scientists at that time be-

lieved that heat is kind of "fluid" called "caloric", rather than the

energy of atomic motions 2. Several physicists had been worked on 2 Stephen G Brush. History of the
kinetic theory of gases. Istituto della
Enciclopedia Italiana, 1, 2004the idea of treating heat as a form of atomic motion since Bernoulli,

but most of their results passed unnoticed until another scientific

giant, James Maxwell, formulated his dynamical theory of gases in

1867
3. To unpack this seemingly strange argument, we start from 3 JC Maxwell. Illustrations of the

dynamical theory of gases. Philos Mag,
19:19–32, 1867phenomena at atomic level and later scale them up to macroscopic

scale. For gaseous systems, the relationship that bridges these two

vastly different scales is the well-known "ideal gas law",

PV = nRT, (1.1)



12 notes on heat transfer labs

with all the symbols taking their common meanings. Because

what we will deal with in this lab is mostly the ambient environ-

ment, here we derive a relationship between kinetic energy of gas

molecules and temperature to prove the energy-temperature argu-

ment. Our strategy is simple. Because temperature is already de-

fined at the RHS of Eq.(1.1), we will try to relate PV to energy of

air molecules. Notice that pressure× volume has an unit of energy,

so our intuition tells us that energy of air molecule might be related

to pressure. To verify our intuition, we first make the following as-

sumptions in a container full of gas molecules:

I. gas molecules are treated as point mass in the container,

II. potential energy of each molecule is negligible,

III. the collisions between two molecules and between molecules

and container walls are elastic, and

IV. the wall of container is perfectly smooth and has no frictional

effect.

The first assumption ignores inner degrees of freedom(DOFs) of

gas molecules 4. The validity of the assumption lies in the fact that 4 For polyatomic molecules, inner
DOFs include the rotational and
vibrational movementsthe dimension of molecule is small compared with the size of con-

tainer. The assumption II implies the container is small enough so

gravitational potential energy does not vary dramatically. The last

two assumptions, however, deserve a closer look as they dictate the

outcome of molecular collisions.

1.1.1 Collisions at the wall: momentum exchange

There are two kinds of collisions: molecule-molecule collisions

and molecule-wall collision. We now discuss them one-by-one by

first setting molecular weight to be m for all the air molecules. Af-

ter a collision between two molecules, their velocities swap due to

the assumption III. When a molecule collides with the wall of con-

tainer, because of assumption IV, its tangential velocity ~vt remains
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unchanged while its normal velocity ~vn is flipped to its opposite

equivalent (see Fig.1.1).

~v

~v′

−→vn

−→vt

−→vt

−−→vn

θ

Figure 1.1: Molecular velocity before
and after a collision between air
molecule (the circle) and the wall
of container

The change in molecular momentum p during the collision in

Fig.1.1 is simply ∆p = 2m~vn = 2m~v cos(θ), with θ the angle between

incoming velocity and its normal component. According to New-

ton’s second law, the rate of momentum change equals to the force that

single air molecule acts on the wall of container. We also know that the

pressure is the total force that gas molecules act on the wall per unit

area, so we can relate pressure P with ∆p through the relationship

P =
1
S

ΣNtot

dpi
dt

∣∣∣∣
τ

Newton’s Law
=

1
S

ΣNtot Fi,τ, (1.2)

where Ntot is the total number of molecules colliding with the wall

at time instance τ, and S is the inner surface area of the container.
dpi
dt |τ and Fi,τ are the "rate of change in momentum and molecular force

of ith molecule at the time instant τ, respectively". The relation in

Eq.(1.2) is coherent with the strategy of relating "pressure" to molec-

ular properties, but it faces a big problem because of the assump-

tion III. The elastic collision demands the action of gas molecule

to be instantaneous at the wall, resulting a divergent definition

of dpi
dt |τ. Based on our discussion of Fig.1.1, the time derivative in

Eq.(1.2) is, unfortunately,

dpi
dt
|τ =

m~v′ −m~v
0

= ∞. (1.3)

Instead of modifying our previous assumptions, we can add one

more assumption to workaround this awkward situation, that is,

V. the directions of molecular velocities have an uniform distribution.

The assumption V derives from the fact that our gaseous system is

homogeneous and still, so there is no reason to suspect that a large

portion of gas molecules move at the same direction. As we will see

later, assumption V allows us to replace the troublesome derivative

with averaged physical quantities, from which a "pressure-energy"

relationship naturally emerges. But right now, we are running out



14 notes on heat transfer labs

of ammunition as the math we developed so far is meant to de-

scribe actions of single molecule not "averaged" molecular action.

Thus, we need a new way to describe gas molecules.

Let’s now imagine that each gas molecule has a velocity vector

attached to it. We collect all of the vectors and attach their tails to

the origin of a spherical coordinate system. By doing so, we can

assign a 3-tuple coordinate to each vector using its magnitude v,

polar angle θ, and azimuthal angle φ (see Fig.1.2). For a sphere of

radius |~v1|, it contains all the velocities that have magnitudes less

or equal to |~v1|. By counting the number of intersection points between

the sphere and velocity vectors, we know how many gas molecules that

move with velocities no slower than ~v1. On the other hand, if we draw

another sphere of radius |~v2| > |~v1| in Fig. 1.2, then the absolute

difference in the intersection numbers on the two spheres tells us

the number of gas numbers that move with velocities in a range from ~v1 to

~v2.

x

y

z

~v2

~v1

φ

θ

Figure 1.2: Spherical coordinate sys-
tem for velocity vectors where the
shaded sphere contains vectors with
magnitudes less or equal to |~v1|.

We can call gas molecule by the spherical coordinates of its ve-

locity for simplicity, i.e., for molecules moving with a velocity of

(θ, φ, v), we name them as vθφ−molecules. With this terminology,

we are well-equipped to tackle the infinity derivative in Eq.(1.3) by

defining averaged quantities based on another concept: mass flux.

1.1.2 Collisions at the wall: mass flux

The awkward infinity derivative in Eq.(1.3) would go away if we

focus on what is happening on the wall within a finite amount of time

rather than any specific time instance. But wait, there is a lot happen-

ing during a finite time period ∆τ, how can we track movements

of all the gas molecules in the container? The answer is we can’t

and we don’t need to. Since the pressure is measured at the wall

of container, we only need to care about molecules that arrive at

the wall within ∆τ. Given arbitrary area dS on the wall of container,

vθφ−molecules that will arrive dS are contained in a slant cylinder of

side length v∆τ (see Fig.1.3 ) 5. If we let N(v, θ, φ) be the number of 5 It’s easy to prove this argument.
For molecules that move at directions
very different from ~v near the wall,
they will landed on the area outside
of dS after ∆τ. One the other hand,
molecules moving in the same velocity
~v but outside of the cylinder cannot
reach dS within ∆τ.
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vθφ−molecules, then the number of molecules in the slant cylinders

Ns(v, θ, φ) can be calculated as

Wall

dS y

z

x

v∆τ

φ

θ

Figure 1.3: vθφ−molecules that will
arrive at S within next ∆τ period must
be found in a slant cylinder with side
length being v∆τ.

Ns(v, θ, φ) = ρvθφv∆τ cos(θ)dS (1.4)

where ρvθφ is the number density of vθφ−molecules. To get an

expression of ρvθφ, we use again the spherical coordinate system in

Fig. 1.2. Let Nv be the number of intersection points (i.e. number of

molecules) between a sphere of radius v and velocity vectors that

have magnitudes no less than v. Because of the assumption V, the

average number of intersections per unit spherical area is Nv/4πv2.

From this, the number of molecules moving in a direction between

θ and θ + ∆θ, and between φ and φ + ∆φ is

Nθφ =
Nv

4πv2 v2 sin(θ)∆θ∆φ =
N
4π

sin(θ)∆θ∆φ. (1.5)

From Eq.(1.5), we can further obtain the number of θφ−molecules

that have their velocities between v amd v + ∆v to be

nvθφ =
Nv − Nv+∆v

4π
sin(θ)∆θ∆φ =

∆Nv

4π
sin(θ)∆θ∆φ, (1.6)

and

ρvθφ =
nvθφ

V
=

∆Nv

4πV
sin(θ)∆θ∆φ (1.7)

where V is the volume of container.

Dividing both sides of Eq. (1.4) by ∆τdS gives us the number

of vθφ−molecules that collide with the wall per unit time per unit

wall area, Φ(v, θ, φ) 6, i.e., 6 Notice that Φ(v, θ, φ) has an unit
of number/time/area. It essentially tells
number of molecules that arrive at
an unit of area per unit time. And
we now have a well-defined "time-
derivative" quantity to play with!

Φ(v, θ, φ) = ρvθφv cos(θ). (1.8)

Φ(v, θ, φ) is referred as mass flux of vθφ−molecules.

Now that we have well-defined mass fluxes that is "time-

derivative", we can free pi in Eq.(1.2) from the awkward d
dt , and

applied the derivative to its prefactor "ΣNtot/S". To do so, we need

to recast ΣNtot/S into a form with mass fluxes in it.
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1.1.3 A ride back to ideal gas law

To recast Eq.(1.2), we go back to Fig.1.1 and notice that the

change in momentum of vθφ−molecule after a collision is still

∆p = 2mv cos(θ), (1.9)

which is again independent of azimuthal angle φ. The character

of azimuthal angle free of the container has something to do with

the assumption IV. Imagine there are receptors on the wall that

absorb molecules only when they move in specific polar and az-

imuthal angles, then ∆p will be φ−dependent 7. But we will just 7 Physicists call this independent-
dependent transition as "break in
symmetry", and theory that studies
symmetries of physical problems is
called group theory.

stick to Eq.(1.9) without losing too much generality. Now, the trick

is: if we multiply ∆p with Φ(v, θ, φ), the product has an unit of

[momentum ×molecule number/(time × area)], identical to that

of pressure! Thus, we conclude that the product ∆p×Φ(v, θ, φ) gives

the pressure that is caused by bombarding of the vθ−molecules, and is felt

by the wall of container. The pressure is therefore the integration of

∆p× Φ(v, θ, φ) over θ, φ, and v. Combining Eq.(1.7), (1.8) and (1.9)

gives

P = Σv

∫ 2π

0

∫ π/2

0

∆Nv

2πV
mv2 sin(θ) cos2(θ)dθdφ =

m
3

Σv
∆Nvv2

V
, (1.10)

where Σv is a summation over all possible magnitudes of velocity.

The last equivalence in Eq.(1.10) hides the average of v2, i.e. 8, 8 Ntot here is still the total number of
gas molecules in the container

v̄2 =
Σv∆Nvv2

Ntot
. (1.11)

So we can write

PV = Ntot
1
3

mv̄2 = nRT. (1.12)

The middle part in the equation above is very much like averaged

kinetic energy of particles times total number of molecules. If we

write the gas constant R as a product of Avogadro’s constant NA

and Boltzmann constant kB, we have Ntot = nNA and finally,

1
2

mv̄2 =
3kBT

2
. (1.13)
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Eq.(1.13) clearly shows that temperature relates to the averaged

kinetic energy of gas molecule by a constant 3kB
2 . Because the

container has a 3D space, and we have the velocity squared to be

v2 = v2
x + v2

y + v2
z . Eq.(1.13) also indicates that the averaged kinetic

energy is simply kBT/2 at each dimension.

1.2 Tools for Measuring Temperature

Tools for measuring temperature can be roughly categorized

into three classes: thermoelectric, electro-activated, and radiation-

activated. In this section, we will emphasize the use of the first two

classes, and their primary differences are listed in Table.1.1.

Thermoelectric Electro-activated Radiation-
activated

Principle Seebeck effect
temperature-
resistance rela-
tion

radiative heat
transfer

Accuracy intermediate high/intermediate intermediate/low

Application point-wise mea-
surements

point-wise
mesurements

area-averaged
measurements

Table 1.1: Comparison between differ-
ent classes of temperature measure-
ment tools

Thermoelectric tools rely on Seebeck effect where temperature

gradient in thermally conductive material induces electron flow

and establish finite electric potential drop from hot end to cold end.

The possibly simplest application of Seebrck effect is thermocouple

in which two wires made of dissimilar materials join at one end

and connect to voltage meter at the other end. When the joint is

heating up or cooling down, two distinct potential drops establish

in two wires, and their difference is measured at the voltage meter.

As what Fig.1.4 shows, if two wires made of identical material are

joined, no net voltage will be established at voltage meter, and no

meaningful temperature reading will be obtained.

V

V

Joint

Joint

∆V1

∆V2

∆Vnet = ∆V1 − ∆V2 6= 0

∆Vnet = ∆V1 − ∆V1 = 0

∆V1

∆V2

Figure 1.4: Seebeck effect in thermo-
couple where two dissimilar materials
establish non-zero potential drop at
voltage meter (top) while two identi-
cal materials establish zero potential
drop (bottom)

Unlike thermoelectric tools, electro-activated tools require acti-

vation of current in inner circuit where resistance of alloy material

is measured. It is well-known that electric resistance of metallic ma-

terials varies with temperature. Materials that have their resistances
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increasing/decreasing with increasing temperature are said to have

positive/negative temperature coefficients(or PTC/NTC). Among

all the electro-activated tools, resistance temperature detector(RTD)

and thermistor are the most popular ones. RTD usually uses ma-

terials with PTC, which have nearly linear relationship between

temperature and resistance 9. As a result, measurements from RTD are 9 See some of common temperature-
resistance curves here

repeatable and thus more reliable than thermistor. However, the typical

activation current in RTD is 1 mA or less, resulting in much longer

waiting time before the device reaches its steady state. Thermistor

usually uses NTC material, which has steep resistance-temperature

curve at low temperature range (see Fig.1.5). Because of this, ther-

mistor is very sensitive when measuring low/intermediate temper-

atures, but the nonlinearity of resistance-temperature curve could

cause inaccuracy in measurements.

T

R

∆R

∆T
Figure 1.5: Resistance-temperature
curve for NTC material, where steep
gradient is found at low temperature

Finally, radiation-activated tools use bolometer array to receive

electromagnetic radiation from the surface of target. The energy car-

ried by electromagnetic radiation is transfomed into thermal energy

to heat up thermometer in inner circuit to give temperature read-

ings. As of Aprial,2021, a large amount of infrared thermometers

have been employed in the COVID testing process, and they can

also be grouped into the class of radiation-activated tools.

1.3 Few More Words on Infinite Time Derivative

The infinite time derivative introduced in Eq.(1.3) might puzzle

readers who have previous experience of experimenting classical-

mechanical phenomena, such as potential-kinetic energy transfor-

mation. Everything people observe in those experiments is smooth

and differentiable. The idea of infinite time derivative there is, sim-

ply unfeasible. The most famous counter example is perhaps Brow-

nian motion, which describes random behavior of small particles.

By taking a closer look at the trajectories of Brownian motion, Ein-

stein, quite shockingly, found that it is not possible to find well-

https://www.te.com/usa-en/industries/sensor-solutions/insights/understanding-rtds.html?gclid=CjwKCAjwpKCDBhBPEiwAFgBzj9uMIm1BxZoP0VSCeXPknE0WwvLcBD-PecdvHpXxdz3BS3VTQAeTWBoCeD0QAvD_BwE
https://www.te.com/usa-en/industries/sensor-solutions/insights/understanding-rtds.html?gclid=CjwKCAjwpKCDBhBPEiwAFgBzj9uMIm1BxZoP0VSCeXPknE0WwvLcBD-PecdvHpXxdz3BS3VTQAeTWBoCeD0QAvD_BwE
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defined derivative anywhere along the trajectory. Such bizarre fea-

ture of Brownian motion, as shown by Feynman 10, can be related to 10 Richard P Feynman, Albert R
Hibbs, and Daniel F Styer. Quantum
mechanics and path integrals. Courier
Corporation, 2010

the stochastic nature of our world.
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In this note, we summarize basics of heat conduction using in-

ductive logic. By doing so we may be able to internalize important

things by building conceptual connections among them. Hopefully,

Delivering the content inductively can make one feels that we are

building a tunnel together from nowhere to a place where things

can be understood in terms of temperature gradient, Fourier’s law,

and heat flux.

2.1 Two concepts: Thermal energy and Specific Heat

We first deduce a relationship between thermal energy and

specific heat. In a heat transfer analysis we essentially deal with

thermal energy flow from hot regions to cold regions. Such energy

transfer process is manifested by time-(in)dependent temperature

distributions. Inspired by these facts, we conclude that there must

be a relationship between heat energy and temperature. Like many

other physical problems, we don’t have an "absolute reference" to

define the zero point of thermal energy. Instead, we only care about

the differences in thermal energy between two objects/regions. So it

is most likely that difference in thermal energy is directly related to

temperature difference. In other words, the thermal energy differ-

ence ∆Q, is a function of temperature difference ∆T, i.e.,

∆Q = f (∆T) (2.1)

To figure out the exact form of the function in Eq.(2.1), we need

help from Joseph Black, a scottish experimentalist who found that
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"equal masses of different substances require different
among of heating time to reach a preset target
temperature."

Let’s assume that the heater Joseph used had a steady power

output, P, then, the thermal energy injected into each substance

in Joseph’s experiment can be calculated as the product of P and

heating time t, i.e., ∆Q = P× t. By plotting ∆Q versus ∆T of each

substance, Joseph found a linear relation which says

∆Q = α∆T, (2.2)

with α being a constant, different for each substance. Because

two objects made of identical substance but differring in masses

require different amount of thermal energy to achieve a given tem-

perature, we know α varies with mass m. If we fix ∆T in Eq.(2.2)

and vary the sample mass in Joseph’s experiment, we can further

plot ∆Q versus m to find that

∆Q = mcp∆T, (2.3)

where cp is a coefficient called specific heat, and has an unit of

energy per mass. In 1819, French chemist Pierre-Louis Dulong and

the French physicist Alexis-Thérèse Petit found that

"atomic weight times specific heat of an element is a
constant", i.e., Dulong-Petit law.

Since then, people use such law to measure atomic weights for

different elements. During the first decade of 20th century, Dulong-

Petit law was found broken as specific heat of any substance ex-

ponentially decreases when environmental temperature drops to a

extremely low value. The deviation from Dulong-Petit Law inspired

Einstein and Debye to understand the root of specific heat in terms

of lattice vibrations. It was Debye who first treated lattice vibra-

tions as bosonic particles, called phonons 1. Debye’s model, along 1 Debye’s model on Wikipedia

with Planck’s law of black body radiation, marked the beginning of

quantum mechanics.

https://en.wikipedia.org/wiki/Debye_model
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Obviously, Eq.(2.3) is not handy to use as we are not excited to

know the mass of the substance on which we observe heat transfer

phenomena. To make Eq.(2.3) more general, we normalize both

sides of the equation by a characteristic volume to give

∆Q = ρcp∆T. (2.4)

We now have the mass density ρ in Eq.(2.4), and we will use this

equation later to derive heat equation in 1D media.

2.2 Fourier’s Law: Governing Equation for Heat Transport

in Materials

As what alluded above, the capacity of a material storing ther-

mal energy can be attributed to lattice vibrations. However, **it is

electrons that transport thermal energy within a material**. People

know this because of the Seebeck effect where a potential difference

is built between two ends of a wire because of heat transport. From

this point of view, we need a new equation to describe the rate of

heat transport. To derive such a equation, we first define the con-

cept of "heat flux",q, as flow of thermal energy per unit area per

unit time. It has a unit of watts/area. In his experimental paper

published in 1822, Fourier concluded that

"the heat flux resulting from thermal conduction is
proportional to the magnitude of the temperature gradient
and opposite to it in sign."

From this conclustion, Fourier’s law can be written as:

q = −κ∇T, (2.5)

where κ is a coefficient called thermal conductivity. Eq.(2.5),

along with the concept of thermal flux, sets up a stage for us to

make an analogy between heat conduction and electric current.

In an electric circuit, we have a relationship among resistance R,

voltage V, current density i, and cross-section area A, as
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∆V = i× A× R. (2.6)

The current density i is defined as the amount of electrons pass-

ing through per unit area per unit time. Now, if we imagine the

heat conduction as a process of energy flowing through a material,

we can replace current i in (2.6) with heat flux q, and replace poten-

tial difference ∆V with ∆T to give,

∆T = q× A× Rt. (2.7)

Eq.(2.7) gives the definition of "thermal resistance". For an

isotropic 1D material of length L, if temperatures at two ends are

T2 and T1, Eq.(2.5) can be written as

q = −κ∇T = −κ
T2 − T1

L
, (2.8)

under the steady-state condition. Substituting (2.8) into (2.7)

gives the explicit expression for Rt as

Rt =
(T1 − T2)

−κ(T2 − T1)A/L
=

L
κA

. (2.9)

With this current-heat flux analogy, we can easily apply rules of

serial/parallel resistance in electric circuit to our thermal circuit.

2.2.1 Contact thermal resistance

We can treat heat conduction at an interface between two bod-

ies as heat flow through a contact thermal resistance. Let lengths

of body A and B be LA and LB, and their cross sections be A, so

their thermal resistances are Rt,A = L
κA A and Rt,B = LB

κB A . At the

interface between A and B, we don’t have the concept of thermal

conductivity well defined, instead, we define the thermal conduc-

tance coefficient, hc, by writting the contact thermal resistance Rt,c

as 1
hc A . Therefore, the heat flow between the two bodies in contact,

bodies A and B, is found as
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q =
T1 − T2

∆xA/ (kA A) + 1/ (hc A) + ∆xB/ (kB A)
, (2.10)

where T1 and T2 are temperatures at two ends.

2.3 Heat Equation: Thermal Energy, Specific Heat, and

Fourier’s Law in one Place

Let’s imagine an 1D rod of cross section area A. If we only focus

on a thin slice of the rod with a thickness of dx, we know, from

Eq.(2.3) and (2.4), that the change rate of thermal energy in the slice

is

∂Q
∂t

= ρcp A(dx)
∂T
∂t

. (2.11)

On the other hand, the heat flux at the right and left faces of the

slice are ql and qr. By applying the conservation law of energy, we

have

∂Q
∂t

= (ql − qr)A. (2.12)

Equating the RHS of equations (2.11) and (2.12) gives:

ρcp
∂T
∂t

= − ∂q
∂x

. (2.13)

Using Fourier’s law at RHS of (2.13), we finally arrive at the 1D

heat equation:

∂T
∂t

=
1

ρcp

∂

∂x

Å
κ

∂T
∂x

ã
. (2.14)

In 3D space, Eq.(2.14) is generalized as:

1
α

∂T
∂t

=

Ç
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

å
. (2.15)

where α = κ
ρcp

is the thermal diffusivity. Here we assume ther-

mal conductivity κ to be constant. To investigate temperature distri-
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bution on a disk, we need to write Eq.(2.15) in a cylindrical coordi-

nate as

1
r

∂

∂r

Å
r · k ∂T

∂r

ã
+

1
r2

∂

∂φ

Å
k

∂T
∂φ

ã
+

∂

∂z

Å
k

∂T
∂z

ã
= ρcp

∂T
∂t

. (2.16)

2.4 Summary

Things are not always derived from fist principles. Fourier’s law

has no rigorous root in mathematical physics, even though people

have tried to derive it from basic axioms of quantum mechanics 2. 2 see here

But as long as people are satisfied with the concept of energy flow

and heat flux, we as human being should have no problem of us-

ing it. That is, we use things before we know what they really are.

Looks like that’s just basics of how to build mordern civilizations.

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.79.042101


Lab3 Basics of Convective and Radiative Heat
Transfer

This chapter explains basic aspects of convection and radiation,

the two primary ways of heat transfer other than conduction. We

wish to understand the concepts of buoyancy, forced convection, ra-

diation from first principles. The hope is to establish the importance

of different boundary conditions in heat

3.1 Newton’s Cooling Law: When the Heat Conductor is

Exposed

3.1.1 When the insulator is still there

In Lab1 we discuss the heat transfer process only by conduc-

tion, where we force thermal energy flowing at radial and axial

directions by cutting off heat exchange between the conductor and

ambient environment. Let’s first review the setup of linear heat con-

duction in Lab2 (see Fig.3.1), where we have a metal rod isolated

from surrounding environment by thermal insulator. We already

discussed that the temperature profile at axial direction is linear as

the (1D) heat equation

T3T2T1

T8

T7

T6

T5

T4

Insulatorq = 0

Y
X

Figure 3.1: Schematic of one-
dimensional conduction.

∂T
∂t

= α
∂2T
∂x2

at steady state becomes

0 = α
∂2T
∂x2 ,

which has a simple solution of T = ax + b. But what if we want to



basics of convective and radiative heat transfer 27

be more realistic by considering the heat transfer along the radial

direction?

Y

T

T4

T5

T6

T7

T8

X

T
T1

T2

T3

Axial direction

Radial direction

− r
2

r
2

Figure 3.2: Temperature profiles at
axial(top) direction and at radial
direction(bottom) at two distinct axial
coordinates x before steady state

We can develop our intuition of radial temperature profile by

first considering boundary condition at the radial direction. Because

the surface of our metal rod has a direct contact with the thermal

insulator, it is forbidden for any heat transferred at the interface

between the rod and the insulator. This brings up the boundary

condition of zero heat flux, i.e., q = 0. Remember that Fourier’s law

tells us that the driving force of heat flow is temperature difference,

so q = 0 indicates no temperature difference at the interface. As

a result, the temperature profile near the interface must be flat, or,

the temperature gradient must vanish at the interface according

to Fourier’s law. Now, imagine that the system in Fig.3.1 haven’t

reached its steady state, and that the insulator is colder than the

rod at the beginning. By enforcing the boundary condition of q = 0,

the axial temperature profile should look like the solid line in the

bottom subplot of Fig.3.2. As time passes by, the hot center of the

rod dissipates heat radially to the rod-insulator interface. Again,

by enforcing the boundary condition, the profile becomes more flat

while the temperature at the interface increases. Finally, at steady-

state, the same temperature is found everywhere along the radial

direction.

3.1.2 When the insulator isn’t there

So much for the conduction, Let’s now imagine that the in-

sulator is removed and the thermal conductor has a direct contact

with ambient environment. Compared with the conduction exper-

iment, it is obvious that we are dealing with a different boundary

condition. Naively, you might think that the condition of q = 0

no longer hold at the conductor-air interface. However, it does

hold, but for a different reason. To see this, let’s first recall the See-

beck effect 1 where heat is carried by electron flow from hot end to 1 Thermoelectric effect on Wikipedia

cold end (see the bottom inlet in Fig.3.3). At the solid-air interface,

https://en.wikipedia.org/wiki/Thermoelectric_effect
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the electron that carries thermal energy is bounded to positively

charged nuclear in the solid. It is unlikely for free molecules in the

air to carry electrons out of solid body. Thus, the flux of heat flow

defined in Fourier’s law must be zero at the solid-air interface be-

cause the electrons that carry the thermal energy cannot jump off

the solid surface by themselves (see the top inlet in Fig.3.3). As a

result, the boundary condition of q = 0 remains unchanged. But

q = 0 does not mean no heat exchange at the interface. We know

this because we use heating radiator to warm our room up in the

winter. Obviously, Fourier’s law describes energy flow by conduc-

tion, and is no longer sufficient in this scenario. We need a different

law to describe heat transfer process at the interface. It was Sir Isaac

Newton who first found that interfacial heat transfer rate Q̇conv, is

proportional to the temperature difference between the solid surface

Ts and the air T∞. In mathematical terms, this law can be written as

C OO

A+

We can’t,
you’re strongly bounded...

Can you carry me out?
I want to see the world!

We really need you here...

More electrons are coming,
I need you to go...

e−

A+ A+
e−

A+A+

Figure 3.3: Electrons’ behavior in
conductor body(bottom inlet) and
solid-air interface(top inlet). The wavy
lines represent interactions between
different particles, and the weight of
those lines indicates the interaction
strength.

Q̇conv = hm As(Ts − T∞) (3.1)

with hm and As being "convection coefficient" and surface area,

respectively. With Eqn. (3.1), we are now well-equipped to derive

another governing equation for the convection and conduction pro-

cess in a solid by employing the conservation law of thermal energy.

Similar to what we did in Lab1, we cut a thin slice out of an

one-dimensional thermal conductor with arbitrary geometry(see

Fig.3.4). Here we again have some heat flux ql coming in at the left

and some coming out at the right (qr). On the surface, molecules

in the air take heat away with a rate of Q̇conv. The conservation of

energy tells us that the total change in the thermal energy of the

slice ∆Q is simply

∆Q = ql Ac,ldt− qr Ac,rdt− Q̇convdt, (3.2)

where Ac,l and Ac,r are the cross section areas at left and right faces

of the slice, respectively. Recall that, from Lab2, the change in ther-
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mal energy ∆Q is related to the change in temperature Tl − Tr by

the following equation:

∆Q = mcp(Tl − Tr) (3.3)

δx

ql qr

Q̇conv

Ac,l Ac,r

As

Tl Tr

x
Figure 3.4: A slice of conductor with
non-uniform cross section

where the mass of the slice is m = ρ
∫ δx

0 Ac(x)dx with δx being slice

thickness. We now write Q̇conv explicitly using Eqn.(3.1), and divide

both sides of Eqn. (3.2) by dt to give

ρ
∫ δ

0
Ac(x)dx

∂T
∂t

= ql Ac,l − qr Ac,r − hm As(T − T∞). (3.4)

Eqn.3.4 implies two assumptions: (1) the change in temperature is

one-dimensional so the surface temperature is equal to the body tempera-

ture, and (2) the change in temperature is negligible at the slice outer sur-

face(i.e. T is not a function of x at surface). With these assumptions, we

now take a first derivative with respect to x at both sides of Eqn.3.4

to give

ρAc(x)
∂T
∂t

= −∂(qAc)
∂x

− hm
dAs

dx
(T − T∞). (3.5)

Once again, we can derive a governing equation free of flux q by

applying Fourier’s law to give

ρAc(x)
∂T
∂t

= − ∂

∂x

Å
−κ

∂T
∂x

Ac

ã
− hm

dAs

dx
(T − T∞). (3.6)

Eqn.3.6 is the so-called heat equation for extended surface.

Newton’s cooling law gives the macroscopic description of con-

vection. At atomic level, the molecules in the air collide with the hot

surface while taking some energy off the solid through the process

of elastic collision 2. But it was not long after John Tyndall 3 showed 2 Elastic collision on Wikipedia
3 John Tyndall on Wikipediahis fellow scientists how to measure infrared emission from a plat-

inum filament, people started to wondering whether Eqn.(3.1) is

still valid as there is one more mechanism for interfacial heat trans-

fer except convection, that is, thermal radiation.

https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/John_Tyndall
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3.1.3 Buoyancy: things happen to heated molecules

Before we discuss radiative heat transfer, there are something

about the heated air worth mentioning. Why do we care about what

happen to them? The answer to this question helps us to under-

stand the concept of buoyancy, which is a key fluid property to

engineers when they want to design a proper cooling system for

large infrastructures such as internet server farm. After one or mul-

tiple collisions, ambient molecules take thermal energy off the solid

surface, which adds to their kinetic energies. Those hot molecules

have a tendency of fast moving in the ambient environment, and

travel longer distances than those cold molecules. At macroscopic

level, a large group of hot gas molecules expands in the ambi-

ent environment, resulting in decreased density. Now imagine

that the hot air is contained in a mass-less but thermally insulating

balloon which allows the hot air to expand freely. 4 According to 4 In the real world, the pressure
inside a balloon is always slightly
higher than the pressure outside
of the balloon. This phonomenon
is described by the Young–Laplace
equation

Archimedes’ principle, the cold air applies an upward force to the

balloon, Fb, and

Fb = −ρcoldgV (3.7)

with ρcold and V being the density of cold air and the balloon vol-

ume in our case. Because the density of hot air, ρhot, is less than

ρcold, Fb is larger than the gravity of hot air. Without any influence

of wind, the mass-less balloon should float upwards until it reaches

an altitude where ρcold = ρhot. 5 5 In the reality, hot air balloons are
operating upon the similar principle.
A fun fact about commercial balloons
is that one cubic meter air is able to
drag a mass of 7grams when it is
heated to 100

oF.

Knowing the buoyancy of hot air can help us to see why natu-

ral convection is not an efficient way to dissipate heat in large-scale

infrastructure. From Eqn. (3.1) the convective heat transfer rate de-

pends on temperature difference between the heated body and its

surrounding. However, the heated air near the bottom of a large

body will float upwards to the top where the temperature differ-

ence is no longer large because of the accumulation of hot air. As a

result, the upper part of the body will be overheating. For a large-

https://en.wikipedia.org/wiki/Young%E2%80%93Laplace_equation
https://en.wikipedia.org/wiki/Young%E2%80%93Laplace_equation
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scale electronic infrastructure, overheating is the primary killer of

device health. To avoid this problem, engineers have designed vari-

ous forced cooling methods, such as water cooling and fan cooling.
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Figure 3.5: Hot air accumulation due
to the buoyancy

3.2 A Few Words on Radiation

Radiation is perhaps the most special one among the three

primary heat transfer mechanisms as it relies on neither solid nor

fluid to transport heat. Instead, it is the electromagnetic wave that

carries thermal energy and gets emitted or absorbed at surface of

solids. People postulate the effects of radiation of visible light since

ancient farming society without knowing its electromagnetic na-

ture. Then, in 1888, German physicist Heinrich Hertz succeeded

in demonstrating the existence of long-wavelength electromagnetic

waves and showed that their properties are consistent with those

of the shorter-wavelength visible light 6. Two decades before that, 6 Light as electromagnetic radiation
on Britannica

James Maxwell, in his formalation of electromagnetism, describes

light as a propagating wave of electromagnetic fields, from which

he predicted the existence of electromagnetic radiation.

In the case of heat transfer by thermal radiation, we can write ra-

diative heat flux qrad using a form similar to Newton’s cooling law(see

Eq.(3.8)). People rely on this formalism because the mean heat

transfer coefficient hm can then be written as a sum of convective

hm,c and radiative coefficients hm,r(see Eq.(3.9)).

qrad = hm,r(Ts − T∞) (3.8)

q = qconv + qrad = (hm,c + hm,r)(Ts − T∞) = hm(Ts − T∞) (3.9)

As a result, Eqn.(3.6) is still the governing equation for convec-

tive+radiative heat transfer process at the heated surface. To get

an explicit expression for hm,r, we resort to the Stefan-Boltzmann

law in which the heat transfer rate varies as the difference in the 4th

https://www.britannica.com/science/light/Light-as-electromagnetic-radiation
https://www.britannica.com/science/light/Light-as-electromagnetic-radiation
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powers of temperature of solid surface and of ambient environment.

In mathematical terms, the radiative heat flux qrad is

qrad = ξσF
Ä

T4
s − T4

∞

ä
(3.10)

where ξ is the emissivity of the object, F is the so-called "view fac-

tor", and Stefan-Boltzmann constant σ = 5.6703× 10−8watt/m2 K4 7. 7 ξ = 1 for black body and ξ =
0.95 for the coated surface in our
experiment, and the view factor F = 1.We expand the RHS of Eq.(3.10) to give

qrad = ξσF(Ts + T∞)(T2
s + T2

∞)(Ts − T∞). (3.11)

From Eq.(3.11), the "radiative heat transer coefficient" is then

hm,r = ξσF(Ts + T∞)(T2
s + T2

∞). (3.12)

By taking a closer look at Eq.(3.12), we notice that hm,r heavily de-

pents on Ts and T∞, and can not be treated as a constant if signifi-

cant variation of those temperatures exist in the system. Based on

this, people argued that Eq.(3.8) is only valid when the temperature

on solid surface is moderately different from ambient temperature,

and the surface should be well separated from other surfaces in the

system 8. 8 Researchers have found that the
evanescent waves generated by the
reflection of electromagnetic waves
inside matters also promote the rate
of heat transfer between two surfaces
separated only by a small gap, see Fig.
1 in this 2018 paper here

3.3 Juice from the History

According to Nikola Tesla, energy, frequency, and vibration

tell the secrets of our universe. However, the concept of energy was

not well-understood by the scientific community untill 19th century.

Before that, age-defining genius such as Isaac Newton, was even

afraid of admitting that "temperature" and "heat" are two differ-

ent things. In his anonymously published paper, "Scala graduum

Caloris. Calorum Descriptiones & signa", Newton used a small

font size at the end to give the first description of the so-called

Newton’s cooling law 9, where he argued that the amount of heat 9 Newton’s law is recently veri-
fied by two Japanese researchers
using IR camera, and they found
Newton’s results were “quite accu-
rate”.(https://doi.org/10.1016/j.
ijheatmasstransfer.2020.120544))

getting off solid surface is due to the difference in "temperature",

https://pubs.acs.org/doi/10.1021/acsphotonics.8b01031
https://pubs.acs.org/doi/10.1021/acsphotonics.8b01031
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120544
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120544
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not "heat", between the surface and the environment. Standing at

the frontline of mordern physical science, the situation that we’re

facing now is almost identical to what Newton encountered during

his time. Mordern-time physcists argue that our classical world is

essentially quantum-mechanical and stochastic at atomistic level.

So they believe there must exist an ultimate unification between

quantum mechanics and general relativity, with the later describ-

ing phenomena at length scale of galaxies. Will scientists find that

quantum mechanics and general relativity might be indeed two dis-

tinct things just like how we distinguish "heat" from "temperature"?

Only the future can tell. For now, let’s just worry about things from

Newton’s time.



Lab4 Convection at Surface of Lumped Capac-
itance

In Lab4 we are going to explore the efficiency of convection

on the surface of different solids as we change airflow rate and

sample orientations. The principal theories behind this lab have

been elaborated in previous notes, and we will review what we

have learned so far along the way.

4.1 How to be Lumped?

In a system that transfers heat, we call some parts in the sys-

tem as "lumped components" whenever their internal temperature

variation is negligible(i.e., the distribution of temperature is almost

uniform). Because of this, we can treat the lumped components as

simple thermal resistance/capacitance, which simplifies the analysis

of heat transfer process. But how do we know if internal tempera-

ture distribution in a subject is uniform enough?

First we notice that the relative size of lumped components

within a heat transfer system matters as we might not be able to

ignore what’s going on inside a component of a size similar to

the whole system. In other words, we need the characteristic size

of lumped components to be small comparing to the whole system.

Second, we learned from our previous experiments that thermal

conductivity coefficient affects steepness of temperature profile in

medium that transport heat. To see how the thermal conductivity

of different materials affects temperature distribution inside ma-

terial body, let’s first imagine a metal rod wrapped in insulating
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material, and with temperature at its two ends fixed at Tend. At the

middle point, there is a heat source that generates constant heat flux

,qmid(see the top schematic in Fig. 4.1).

Tmid

TendTend qmid qmid

T

X
L−L

κ1

κ2

κ1 < κ2

Figure 4.1: A metal rod with fixed
end temperature(top), and its steady-
state temperature profiles along axial
direction(bottom) when it’s made of
two distinct materials with thermal
conductivity coefficient being κ1 and
κ2, respectively.

At the steady state, we ignore temperature variation at radial

direction, and obtain a mountain-like temperature profile along the

axial direction (see the bottom profiles in Fig.4.1). With the constant

qmid, the "steepness" of temperature profile decreases as the thermal

conductivity coefficient κ increases according to Fourier’s law. As a

result, the "height" of our mountain will decrease if the rod is made

of materials that have larger thermal conductivity coefficient. We

thus conclude that to make temperature variation inside heated

body negligible, the body needs to be highly thermal-conductive.

4.1.1 Biot number

Being small and thermal-conductive is NOT ENOUGH for a heated

body to be treated as lumped resistance or capacitance, because so far, we

deliberately overlooked the effects of convection at the two ends of

the rod in the thought experiment above. Now, if we allow Tend to

vary by exposing the two ends to an ambient environment. If the

ambient temperature T∞ is fixed, then the convective flux at the two

ends are qconv = h(Tend − T∞), where h is convective heat transfer

coefficient. Let L be the distance from the middle point to the rod

end. Then, at the steady state, we establish conservation of energy

in left(and right) half of the rod as

qmid = qconv

κ
Tmid − Tend

L
= h(Tend − T∞)

(4.1)

where Tmid is the middle-point temperature, and Fourier’s Law and

Newton’s cooling law are used at the second equivalence. If all the

temperatures in Eq.(4.1) are moved to LHS, we get a dimensionless

number at RHS, which is named after the French physicist Jean-

Baptiste Biot 1, i.e., 1 Biot on Wikipedia

https://en.wikipedia.org/wiki/Jean-Baptiste_Biot
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Tmid − Tend
Tend − T∞

=
hL
κ

. (4.2)

With the relation in Eq.(4.2), we are now ready to use Biot num-

ber to judge whether a heated body can be treated as a lumped

component. Because we require lumped components to have only

negligible internal temperature gradient, Tmid − Tend must be small

(i.e. Tmid − Tend ≈ 0). Since Tend > T∞ when the body is heated up,

the smaller the Biot number is, the more accurate the assumption

of lumped component becomes. A rule of thumb is that we can

treat a body as a lumped capacitance/resistance, if its Biot number

Bi = hL
κ < 0.1.

4.1.2 Nussalt number and thermal conductivity of fluid

It is not uncommon that people mistake Nussalt number with

Biot number, because they have identical expression at first sight.

While Biot number can be heuristically understood as a ratio of
surface convection
conduction in solid , Nussalt number describes heat transfer solely in-

side the fluid body. Therefore, the thermal conductivity coefficient

in Eq.(4.3) is a property of the fluid in contact with a solid surface.

Nu =
hL

k f luid
. (4.3)

A simple derivation of Nussalt number is given as following: Let us

imagine a heated solid surface is in contact with a fluid of thickness

L. When the fluid flows steadily along the surface, the heat flux is

then

qconv, f luid = h(Ts − Tf luid), (4.4)

where Ts and Tf luid are the surface temperature and the tempera-

ture of fluid body. If there is no flow, on the other hand, the heat

transfers to the fluid through heat conduction only to give

qcond, f luid = k f luid
Ts − Tf luid

L
. (4.5)
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The Nussalt number is then defined as the ratio of convection flux
conduction flux ,i.e.,

Nu =
h(Ts − Tf luid)

k f luid
(Ts−Tf luid)

L

=
hL

k f luid
. (4.6)

For readers who enjoyed the discussion in Lab2, there is some-

thing off regarding the conduction in the fluid. In lab2 we have

discussed how the heat flux represented by the flow of electrons is

not well-defined at the interface between the solid and the ambi-

ent environment, and thus, qconv = 0 is retained. Within the body

of fluid, the conductive flux is, however, well-defined. Instead of

having electron flow that carries thermal energy in solid, the heat

conduction in fluid is accomplished by the energy exchange between adja-

cent molecules. For a polyatomic molecules 2, the energy exchange 2 In fact, it is possible to derive ther-
mal conductivity coefficient from
statistically averaged molecular prop-
erties, such as mean free path and
mean molecular velocities. The meth-
ods used for such derivation is under
the study of a subject called "statistical
mechanics"

(or collisions) causes changes in vibrational and rotational frequen-

cies, and translational velocities. The table below lists thermal con-

ductivity of some common gases.

Thermal conductivity coefficient in mWm−1K−1

100 K 200 K 300 K 400 K 500 K 600 K
Air 9.5 18.5 26.4 33.5 39.9 46.0

Ar Argon (P = 0) 6.3 12.4 17.7 22.4 26.5 30.3
BF3 Boron trifluoride 19.0 24.6
HCl Hydrogen chloride 9.2 14.5 19.5 24.0 28.1
F6S Sulfur hexafluoride (P = 0) 13.0 20.6 27.5 33.8
H2 Normal hydrogen (P = 0) 68.2 132.8 186.6 230.9 270.9 309.1
H2O Water (P=0) 18.6 26.1 35.6 46.2
D2O Deuterium oxide (P = 0) 18.2 26.6 36.3 47.6
H2S Hydrogen sulfide 14.6 20.5 26.4 32.4
H3 N Ammonia 25.1 37.2 53.1 68.6
He Helium (P = 0) 74.7 118.3 155.7 189.6 221.4 251.6
Kr Krypton (P = 0) 6.5 9.5 12.3 14.8 17.1
NO Nitric oxide 17.8 25.9 33.1 39.6 46.2
N2 Nitrogen 9.4 18.3 26.0 32.8 39.0 44.8
N2O Nitrous oxide 9.8 17.4 26.0 34.1 41.8

Table 4.1: Tabulated data of thermal
conductivity from NIST. Unless oth-
erwise stated, the measurements are
taken under 1 standard atmosphere
pressure. The notation "P=0" indicates
that the low-pressure limiting value is
given.

From Table 4.1, we see that the thermal conductivity coefficient

of gases increases with temperature. To explain such phenomenon,

it is not sufficient, however, to resort to ideal gas law,

PV = nRT. (4.7)

Because most of the data in Table 4.1 are obtained with the pressure

P fixed at 1 bar, an increase in ambient temperature results in volu-

metric expansion, reducing the gas number density ρ = n/V. Since

https://www.nist.gov/publications/thermal-conductivity-gases
https://www.nist.gov/publications/thermal-conductivity-gases
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reduced ρ indicates that gaseous molecule need to travel longer dis-

tance before its next collision, the ideal gas law seems to tell us that

the rate of molecular energy exchange is quenched at high tempera-

ture, resulting decreasing thermal conductivity coefficient.

A heuristic correction to this contradictory explanation lies in

the increased kinetic energy of gaseous molecules at high temper-

ature. The excess of kinetic energy promotes the rate of collision

despite of the increased distance between molecules, and hence, the

rate of energy exchanges is also increased. For readers interested in

a more quantitative relationship between temperature and thermal

conductivity, a short account of the kinetic theory of monoatomic

gas is prepared at the end of current chapter.

4.2 Cooling and heating lumped components

Now that we are persuaded that heated bodied with Bi < 0.1

are lumped component, it is easy to write down a governing equa-

tion, and the solution to it tells transient temperature variation of

lumped body over time. Notice that the assumption of lumped

component gives us the freedom of ignoring heat conduction inside

heated body. So we can establish a conservation of energy by only

considering the convection at solid surface, i.e., the thermal energy

change in lumped component ∆Q is solely caused by the convective

heat flux qconv on the solid surface of area "A". From Eq.(2.3), we

have

∆Q = mcp(Tinit − Tbody) = qconv Adt, (4.8)

where Tinit and Tbody are initial and current temperature in the

lumped component body of interest 3. Using Newton’s cooling 3 Remember that cp is specific heat

law at RHS of Eq.(4.8) gives

mcp(Tinit − Tbody)
dt

= hA(Tbody − T∞), (4.9)

where the surface temperature is replaced with Tbody at RHS due to

the assumption of lumped body. Now we divide both sides of (4.9)



convection at surface of lumped capacitance 39

by Tinit − T∞ and write LHS as a first-order derivation with respect

to time, which results in

−
mcp

(Tinit − T∞)
dTbody

dt
= hA

Tbody − T∞

Tinit − T∞
. (4.10)

Since (Tinit − T∞) is a constant, Eq.(4.10) can be written as an ordi-

nary differential equation (ODE) of the normalized temperature,

θ =
Tbody−T∞
Tinit−T∞

, as

−mcp
dθ

dt
= hAθ. (4.11)

Eq.(4.11) has a simple solution of exponential function,i.e.,

θ = exp

Ç
− hA

mcp
t

å
= exp(−αt). (4.12)

Here the constant α (its inverse τ = 1/α is sometimes referred as

time constant) can be further simplified by writing the volume of

lumped body, V, as a product of its surface area A exposed to fluid,

and the inverse of its surface-to-volume ratio rsv (i.e., V = A/rsv).

So Eq.(4.12) becomes

θ = exp

Ç
− hrsv

ρscp
t

å
(4.13)

with ρs being the density of lumped component of interest.

Eq.(4.13) sometimes is referred as power-law function of lumped

component. It clearly shows that the transient temperature variation

of lumped components has nothing to do with the thermal conductivity

coefficient. Instead, the variation is controlled by (1) convective trans-

fer coefficient,(2) surface-to-volume ratio, (3) solid density, and (4)

specific heat. Any action that reduces inverse time constant "α" will slow

down the cooling process of lumped component. Fig.4.2 shows that the

reduction in Tbody within first 4 units of time is the most significant

when the constant α is the largest.

2 4 6 8 10

20

22

24

26

Tbody = 20 + 5 exp(−0.5t)

Tbody = 20 + 5 exp(−t)

Tbody = 20 + 5exp(−0.1t)

t

Tbody(oC)

Figure 4.2: Temperature profiles as
a function of time "t" with T∞ =
20oC, Tinit − T∞ = 5oC, and time
constant α = 1(blue),0.5(green), and
0.1(orange).

The discussion above can be readily applied to the heating pro-

cess of lumped component. To see this, we write out temperatures
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explicitly in Eq.(4.13) as

Tbody = T∞ + (Tinit − T∞) exp

Ç
− hrsv

ρscp
t

å
. (4.14)

When the ambient temperature T∞ is higher than the lumped body

temperature Tbody, Eq. (4.14) describes temperature variation of a

heating process, and a cooling process otherwise. Fig.4.3 shows

that the temperature profiles of a cooling and a heating process are

mirror images to each other when |Tint − T∞| = 3oC.

1 2 3 4 5

2

4

6

8

Tbody = 5− 3 exp(−t)

Tbody = 5 + 3 exp(−t)

t

Tbody(oC)

Figure 4.3: Cooling(bottom) and
heating(top) process with |Tinit −
T∞| = 3oC and T∞ = 5oC

4.2.1 Effects of material properties on convection

Things become more interesting if we pay extra attention to the

four factors in inverse time constant α, and their effects on the cool-

ing/heating rate of lumped component. From Eq. (4.13), the density

ρs and the specific heat cp are two intrinsic material properties, and

product of the two varies with material types. The table below lists

the values of ρscp for some common matallic and ceramic materi-

als. If we fix the values of h and rsv, Table 4.2 shows that steel and

Material Specific heat(kJ/kgK) Density(kg/m3) cpρs
Aluminum 0.9 2550 2295

Brass 0.375 8730 3273.75

Stainless steel 0.49 8030 3934.7
Macor 0.79 2520 1990.8

Table 4.2: Specific heat and density of
some common materials, the data for
machinable glass ceramic "Macor" is
obtained from Corning Inc.

Macor have the smallest and the largest inverse time constant α,

respectively. Starting from the same initial temperature, the rank

of cooling/heating rates for these materials follows a sequence of

Macor>Aluminum>Brass>Stainless steel.

4.2.2 Effects of geometry of lumped components on convection

There is no way to fit a decent discussion of the relationship be-

tween convective coefficient h with other physical parameters in this

note 4, which left us with the last factor in α: the surface-to-volume 4 Up to March 24th, 2021, there are in
total 1,360,000 research papers related
to "convective coefficient" available on
Google scholar

ratio, rsv. For some highly symmetric shapes, such as sphere and

https://www.corning.com/worldwide/en/products/advanced-optics/product-materials/specialty-glass-and-glass-ceramics/glass-ceramics/macor.html


convection at surface of lumped capacitance 41

cube, if we assume that the whole lumped body is exposed to con-

vective process, then rsv can be readily calculated by using formula

listed in Table 4.3. With these formula, we can also plot rsv against

Geometry Vol. rsv

Tetrahedron
√

2a3/12 14.697/a
Octahedron

√
2a3/3 7.348/a

Cube a3 6/a
Sphere 4πa3/3 3/a

Dodecahedron (15 + 7
√

5)a3/4 2.694/a

Table 4.3: rsv of common shapes with
a being the length of edge/radius

the volumes of these shapes in Fig.4.4. This simple analysis shows

that for a given volume of lumped component, tetrahedron has the

largest rsv while sphere has the smallest. Because large rsv results

in large α, Fig.4.2 and 4.4 indicate that the Tbody drops(cooling) and

increases(heating) much quicker in a tetrahedral body than in a spherical

body. As the lumped body becomes more and more bulky, rsv of all

kinds of polyhedral bodies decrease in an order of O(1/x), resulting

in more sluggish cooling and heating process. Of course, the bulky

component also undermines the validity of lumped capacitance

assumption.
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8

Tetrahedron
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Cube

Sphere
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Vol.(mm3)

r s
v
(1
/

m
m

)

Figure 4.4: rsv versus polyhedral
volumes

4.3 A kinetic theory for thermal conductivity of gas

TL;DR: I indulged myself to write this section only
because deriving macroscopic law from statistical
behavior of molecules is intellectually satisfying.
For impatient readers, please check the most important
results at the end. For ambitious readers, please refer
to Sears’ book for accessible introduction to statistical
thermodynamics 5, and C.V. Heer’s account of stochastic 5 Francis Weston Sears, Gerhard L

Salinger, and John E Lee. Thermo-
dynamics, kinetic theory, and statistical
thermodynamics. Addison-Wesley, 1975

perspectives of thermal physics 6.

6 Clifford V Heer. Statistical me-
chanics, kinetic theory, and stochastic
processes. Elsevier, 2012

To simplify our derivation without losing generality, we again

employ some of the assumptions introduced in Lab1, and they are

I. gas molecules are treated as hard spherical mass of radius r, and

II. potential energy of each molecule is negligible.
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Careful readers might find that assumption I is now considering

molecular volumes comparing to the old one. In lab1, we only care

about the collision between molecules and the wall of container

where the cross section of single molecule is negligible. Inside

the body of a container, where molecules collide with each other,

making molecular size finite helps to visualize process of momen-

tum/energy exchange and to calculate important physical quanti-

ties that describe molecular motions. One of such physical quanti-

ties is the so-called mean free path(MFP), which measures on average

the distance a gas molecule needs to travel before it collides with

another molecule. Knowing MFP is important for our purpose of

relating thermal conductivity to molecular motions.As we will show

in later sections, viscosity and conductivity stem from momentum

and energy exchange between adjacent gas molecules, and MFT

provides a measurement of how often such exchanges could hap-

pen and bridges thermal conductivity with other thermodynamic

quantities (i.e. state parameters). So let’s start by deriving a simple

expression for MFP below.

4.3.1 Scattering and Mean free path

From the assumption I, we can define the exclusion volume

for single molecule as 4πr3/3, i.e., two gas molecules can not have

overlap in their molecular volumes. Let us now consider a thin

slice of thickness ∆x in a cubic container of edge length L. The slice

is thin enough so that molecules contained in the slice does not

overlap with each other long x−dimension (see Fig. 4.5).

4r

∆x

L

L

0

target

bullet

Figure 4.5: Scattering cross section
area due to molecules in a L× L× ∆x
slice.

Let n be the number of gas molecules per unit volume in

the container, and the number of molecules in the slice is then

n× L2 × ∆x. Consider now that a beam of cross section area L× L

is shooting towards the slice. Because of the assumption I, we can

treat molecules in the slice (i.e. the "target") as hard spheres of di-

ameter 4r, and treat molecules in the beam (i.e., the "bullet") as

point mass to enforce the assumption of finite molecular size. Bul-
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lets that hit on targets will be scattered out of the beam, and the

area that can be hit by bullets is called the scattering cross section.

In our case, the cross section area is simply 4πr2 × n × L2 × ∆x.

Let N and ∆N be the total number of bullets and change in bullet

number after the beam’s pass through the slice. Then we have the

following relation,

∆N
N

=
scattering cross section area

total cross section area
=
−4πr2 × n×��L2 × ∆x

��L2
, (4.15)

where the minus indicates decrease in total number of "bullets". In-

tegrating both sides of Eq.(4.15) gives an expression for the number

of "bullets" that survive scattering at x as

N = N0 exp
Ä
−4πr2nx

ä
(4.16)

with N0 being total number of "bullets" at x = 0. If we define σ =

4πr2 as cross section area of single molecule and substitute Eq.(4.16)

back into (4.15), we obtain an expression for "bullets" number that

collide with "targets" at arbitrary coordinate x as

∆N(x) = σn∆xN0 exp(−σnx). (4.17)

Using Eq.(4.17) we can calculate the averaged travel distance before any

one of N0 bullets collides with a "target" as

l =
Σx∆N

N0
= σn

∫ ∞

0
x exp(−σnx)dx =

1
σn

. (4.18)

Eq.(4.18) gives an expression for mean free path, and it can be fur-

ther modified by noticing that the "target" molecules are treated

as still objects. In reality, the "targets" are also moving, but here

we will stick to this simpler form of MFP to proceed our analy-

sis 7. By reversing our logic above, we can conclude that MFP from 7 On the assumption that all
molecules have the same speed, Clau-
sius obtained the result l = 0.75

σn .molecule’s last collision is also given by Eq.(4.18), i.e., at any given

time instance, gas molecules on average have traveled l from their last col-

lisions and will need to travel another l to have another collision. We will

use this conclusion below to drive viscosity η and thermal conduc-

tivity κ of gases.
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4.3.2 Viscosity from momentum transport

If we substitute σ and n for oxygen molecules in Eq.(4.18), MFP

between two subsequent collisions of single oxygen molecule is

about 10−7m, three orders of magnitude larger than the size of oxy-

gen molecule. So it is really weird to find that nearly all the real

gases are viscous since how come frictional forces exist among gas

molecules at first place when they are far separated? To answer

this question, let us imagine two parallel planes with one of them

moving with a constant velocity of u to the right (see Fig. 4.6). The

velocity u is much slower than molecular velocities, so the whole

system can still be treated as if it’s at equilibrium state. As a result,

a linear velocity profile is found between the planes.

y

x

u

Figure 4.6: Vertical velocity profile
developed in gas between two parallel
planes. The top plane moves with
velocity u to the right

At an imaginary plane (e.g. the dashed line in the figure), there

must be exchange of molecular momenta as molecules that pass the

plane from below have on average slower velocities at x−direction

than those pass it from above. Would it be that the viscosity of

gas is resulted from such momentum exchange? To calculate the net

momentum exchange at the imaginary plane, we first need to know

the average vertical distance ȳ from the imaginary plane where

molecules had last collision before they pass the plane. As we will

see later, ȳ helps us to find the average x−momentum of molecules

that pass the imaginary plane.

Based on the terminology we developed in Lab1, the mass flux

of molecules arriving at the imaginary plane in a polar angle θ is

obtained by integrating over azimuthal angle and velocity magni-

tude in Eq.(1.8), i.e,

Φθ =
1
2

nv̄ sin(θ) cos(θ)∆θ. (4.19)

The total mass flux is then

Φ =
∫ π/2

0
Φθdθ =

1
4

nv̄. (4.20)
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Given Eq.(4.19) and (4.20), the averaged vertical distance ȳ is then

ȳ =
nv̄
∫ π/2

0 sin(θ) cos(θ)l cos(θ)dθ

2Φ
=

2
3

l, (4.21)

where l cos(θ) is the vertical distance between the imaginary plane

and the latest collisions that cause molecules arriving at the plane at

a polar angle of θ (see Fig.4.7).

θ

Latest collision

Imaginary plane

l

lc
os

θ

Figure 4.7: Vertical distance between
the imaginary plane and the latest
collision

Let u0 be the x−velocity at the imaginary plane, then the

x−momentum of molecules pass the plane from above is them

p+x = m(u0 +
2
3

l
du
dy

), (4.22)

according to Taylor expansion. Similarly, for those below the plane,

their x−momentum is simply

p−x = m(u0 −
2
3

l
du
dy

), (4.23)

and the change in x−momentum from the "fast" to the "slow" is

∆px = m
4
3

l
du
dy

. (4.24)

Multiplying both sides of Eq.(4.24) by the Φ in Eq.(4.20) gives the

"viscous force" per unit area at the LHS 8, i.e., 8 we used this trick before in Lab1

Fvis
A

=
4
3

mlΦ
du
dy

. (4.25)

Since the viscosity coefficient η is defined through the equation

Fvis
A

= η
du
dy

, (4.26)

we finally obtain an explicit expression for η as

η =
mv̄
3σ

. (4.27)

Eq.(4.27) is very interesting as it indicates that the viscosity of gas

does not depend on gas density but average molecular velocity.

With the method developed here, deriving an expression for ther-

mal conductivity coefficient κ becomes fairly easy.
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4.3.3 Thermal conductivity from energy transport

We first notice that Fourier’s law looks a lot like Eq.(4.26). In-

stead of having viscous force per unit area at LHS, we have, in

Fourier’s law, the heat flux q proportional to temperature gradient,

i.e.,

q = −κ
dT
dy

. (4.28)

We again imagine an imaginary plane in the gas, at which the tem-

perature is T0. The energy of single molecule at the plane is c′vT0

with c′v being the "specific heat" per molecule. By following the for-

malism in Eq. (4.22) and (4.23), the molecular energies above and

below the plane before their arrival are

Eabove = c′v(T0 +
2
3

l
dT
dy

) (4.29)

and

Ebelow = c′v(T0 −
2
3

l
dT
dy

). (4.30)

Following the same logic laid out in the previous subsection 9, we 9 Notice that dT/dy is negative here,
so Ebelow − Eabove > 0

have

Φ× (Ebelow − Eabove) = −
c′vv̄
3σ

dT
dy

= −κ
dT
dy

, (4.31)

and

κ =
c′vv̄
3σ

. (4.32)

From Eq.(4.32), we find that the thermal conductivity of gas is in-

versely proportional to the size of molecule. The gas molecule that

can move fast and store lots of thermal energy tends to have better

thermal conductivity.

4.4 Inadequacy of hard-sphere assumption

Based on our derivation of η and κ, the ratio of the two gives

κ/η =
c′v
m

=
cv

M
(4.33)
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where cv and M are the specific heat and the molar mass of gas

molecule, respectively. From this, we have

ηcv

κM
= 1. (4.34)

Everything in Eq.(4.34) is experimentally measurable, so we can

test this relationship on real gases. However, real gases usually have

such value around 0.5, not 1 10, which means our hard-sphere as- 10 For air, the ratio has a value of
0.51546.

sumption does not capture the whole story of molecular collisions.

But at least it got the order of magnitude right. To make the as-

sumption more realistic, we might have no choice but to consider

what is happening at the moment of molecular collision, an interest-

ing realm for chemists, physicists, and me.



Lab5 Understanding Heat Exchanger

"Of course, they are not directly called heat exchangers
in our daily life. They can be found in many devices
around us: computers, refrigerators, radiators, mobiles
phones and etc. I promise many of us live with them every
day. Just imagine a hot summer day, you have to sit a room
without an air conditioner or have a warm coke if you don’t
have a fridge."---A comment from Dr.Qian

Unlike previous notes, in Lab5 we will focus on indicators of heat

exchange efficiency and make quantitative comparison of various

heat exchangers, i.e., engineering side of things. At the end, we will

also discuss elementary design principles of heat exchanger.

5.1 Basic Working Principles of Heat Exchanger

Heat exchanger, by definition, is any device that exchange heat

between two or more fluids 1 of different temperatures. The basic 1 Heat exchanger can also transfer
heat between gas and liquid, a multi-
phase process.components of heat exchangers include: (1) flow path of cold fluid,

(2) flow path of hot fluid, and (3) a separator to prevent direct con-

tact between the cold and the hot 2. 2 some heat exchangers might allow
direct mixing between two distinct flu-
ids, so fluids are not totally separated
in those exchangers

Regardless of the design, the underlying principles that heat

exchangers work upon are laws of thermodynamics 3. While the 3 Even though they are called the
"laws", thermodynamics is actually
an empirical subject, i.e., these laws
are summarized solely based upon
experimental results, and are not, at
least for now, logically derivable.

zeroth law of thermodynamics demands us to create temperature

difference to simply make energy flow happen, the first and second laws

of thermodynamics are the guidelines for engineers to fine-tune the

energy flow in heat exchangers to improve the energy efficiency

while keep the operating cost modest.

The first law of thermodynamics dictates how we construct gov-

erning equation for describing energy flow in the exchangers. Be-
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cause the energy cannot be destroyed or created, any amount of

energy goes into the heat exchanger will cause equal amount of

decrease in energy in its surrounding environment. The governing

equation is then established upon the conservation of energy, and

has terms for what is happening inside heat exchanger at one side

and has terms related to environmental changes the other side, i.e.,

∆Uexchanger = −∆Uenvironment. (5.1)

The second law of thermodynamics sheds light on the way of

how we are supposed to delay or accelerate the process of exchang-

ers achieving their thermal equilibrium. A thermal equilibrium is

achieved when the entropy 4 of the system is maximized. According 4 the entropy is defined as the ratio
of change in heat over temperature,
i.e., ∆S = ∆Q

T
to the second law, the only changes possible at an equilibrium state

are the ones that further increase system entropy.

5.2 Common Types of Heat Exchangers

Heat exchangers fall into different classes based on their flow

configuration, construction method, and heat transfer mechanism. Com-

monly used flow configurations are: concurrent flow, countercur-

rent flow, cross flow, and hybrid flow. The schematic of how the

distinct fluid streams flow in these configurations are shown in

Fig. 5.1 and 5.2, where no direct mixing is allowed in all the con-

figurations. These flow configurations are usually adopted in three

qhot,in qhot,out

qcold,in

qcold,out

qhot,in qhot,out

qcold,out

qcold,in

cocurrent flow countercurrent flow
Figure 5.1: Cocurrent and counter-
current flow configurations in heat
exchangers



50 notes on heat transfer labs

qhot,in qhot,out

qcold,in

qcold,out

cross flow

qhot,in qhot,out

qcold,in

qcold,out

hybrid flow
Figure 5.2: Cross and hybrid flow
configurations in heat exchangers

types of exchangers,i.e., "shell-and-tube", brazed plate, and concentric

tube. While the flow configurations sketched in the figures above

can be directly applied to concentric tube exchanger, they might

be modified in the later two exchangers because of their special ar-

rangements of flow channels. In shell-and-tube exchanger, a large

array of small pipes are regular arranged by keeping pipe interval

constant. The array is then wrapped inside a large tube with fluid

filling the space between the pipes and the tube. When it is operat-

ing, the fluid flowing in small pipes gets heated up or cooled down

by the fluid flowing in the tube. The brazed plate exchanger, on the

other hand, is constructed by bundling multiple corrugated thin

plates together. Each pair of plates is welded and then stacked to-

gether to complete the flow channels. Unlike shell-and-tube and

concentric tube exchangers, plate exchangers can allow more than

two kinds of fluids flowing in separate channels to improve heat

transfer efficiency.

The construction method of heat exchanger can be roughly clas-

sified using the following three criteria: (1) recuperative vs. regener-

ative, (2) direct vs. indirect, and (3)static vs. dynamic. In recuperative

exchangers, fluids are flowing simultaneously in their own chan-

nels while regenerative exchangers allow hot/cold fluids flow in

different channels alternatively. Among the recuperative exchang-

ers, those allow direct mixing of different fluids are called direct

exchangers, and they are indirect exchangers otherwise. Meanwhile,
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the static-dynamic criterion only applies to regenerative exchang-

ers. In static regenerator, the heat exchanger components remain

stationary, while dynamic regenerator has its components moving

during the heat exchange process. Comparing to recuperative ex-

changers, using both static and dynamic exchangers incurs the risk

of cross-contamination between distinct fluids.

Condenser, evaporators, and boilers are also considered as

heat exchangers in principle. Heat transports in these systems

through multi-phase heat transfer mechanism while exchangers

introduced above generally transfer heat in single-phase flow. The

hero in this class of heat exchangers is the microchannel coil, which

is widely used in the air conditioning systems for the refrigerant

evaporation and condensation 5. One fun fact is that the designs of 5 more details can be found here

microchannel-based exchangers generally exclude the use of wa-

ter. The reason for such design can be attributed to the high boiling

temperature of water in standard ambient environment. You cer-

tainly don’t want your fridge and air conditioner overheating!

5.3 Number of Transfer Units (NTU) Method

The general heat exchanger selection considerations are: (1)size

limitations, (2)thermal output, (3)fluid type, and (4)costs. Indus-

trial applications of commonly used heat exchangers are listed in

Table.5.1 below. We are not going to extend our discussion of these

elements here as each one of them worth a Ph.D. thesis. Instead,

we will just focus on defining efficiency of heat exchanger using the

number of transfer units (NTU) method.

Type of heat exchanger Common applications

Shell and tube
Oil cooling/refining

Steam generation
Industrial paint system

Concentric tube Heat transfer process that has spatial constraints

Brazed plate Food processing
Furnaces

Table 5.1: Industrial applications of
common heat exchangers

NTU starts with finding the maximum heat flux qmax by multi-

plying minimum hate capacity rate Cmin with the largest temperature

https://hvacrschool.com/need-know-microchannel/
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difference in an exchanger 6, that is, 6 Theodore L Bergman, Frank P
Incropera, David P DeWitt, and Adri-
enne S Lavine. Fundamentals of heat
and mass transfer. John Wiley & Sons,
2011

qmax = Cmin(Th,i − Tc,i). (5.2)

Th,i and Tc,i in Eq. (5.2) are the temperatures at hot and cold fluid

inlet, respectively. The heat capacity rate is found by

Cmin = min{ṁccp,c, ṁhcp,h}, (5.3)

and of course

Cmax = max{ṁccp,c, ṁhcp,h}. (5.4)

ṁc(h) is the mass flow rate of cold(hot) fluids, and cp,c(h) is the spe-

cific heat of cold(hot) fluids. The net heat flux can be defined by

using hot fluid temperatures at inlet and outlet as

qnet = ṁhcp,h(Th,i − Th,o). (5.5)

Then the effectiveness of heat exchanger ε is given as

ε =
qnet

qmax
. (5.6)

A simple dimensional analysis tells us that ε is a function of the

heat capacity ratio Cr = Cmin/Cmax, and number of transfer units

(NTU). NTU is given by

NTU =
UA
Cmin

(5.7)

where U and A are the overall heat transfer coefficient and the heat

transfer area respectively. The product UA can be calculated using

log-mean temperature difference ∆Tlm and qnet by

UA =
qnet

∆Tlm
. (5.8)

The log-mean temperature difference(LMTD) for parallel flow(PF)

and counter flow(CF) configurations are given by

∆Tlm,PF =

(
Th,i − Tc,i

)
−
(
Th,o − Tc,o

)
ln Th,i−Tc,i

Th,o−Tc,o

(5.9)
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and

∆Tlm,CF =

(
Th,i − Tc,o

)
−
(
Th,o − Tc,i

)
ln Th,i−Tc,o

Th,o−Tc,i

. (5.10)

The explicit relationship between ε and NTU for complicated ge-

ometries and flow configurations can only be obtained by solving a

set of PDEs numerically. But for a parallel flow heat exchanger, the

relationship is

ε =
1− exp [−NTU (1 + Cr)]

1 + Cr
, (5.11)

and for counter flow configuration we have instead 7 7 When Cr = 1, the effectiveness is

ε =
NTU

1 + NTU
(5.12)

ε =
1− exp [−NTU (1− Cr)]

1− Cr exp [−NTU (1− Cr)]
. (5.13)

It turns out to be a common practice using LMTD to design the

size of heat exchanger 8. Here we lay out the general procedures 8 Cüneyt Ezgi. Basic design methods
of heat exchanger. In Heat Exchangers-
Design, Experiment and Simulation.
IntechOpen, 2017

for finding the size of tubular heat exchangers from LMTD. From

Eq.(5.8), the heat transfer area A is then

A =
qnet

U∆Tlm
, (5.14)

For the unfinned tubular heat exchangers, the overall heat transfer

coefficient on outer surface is given by

Uo =
1

ro
ri

1
hi
+ ro

ri
R f i +

ro
k ln
Ä

ro
ri

ä
+ R f o +

1
ho

. (5.15)

The subscript "o" and "i" in Eq.(5.15) represents outer and inner sur-

faces of heat exchangers, respectively. Using this terminology, ro

and ri are radius of outer tube and inner tube while hi and ho are

heat transfer coefficients of the fluid in inner tube, and the fluid

flowing between inner and outer tubes. R f o and R f i are fouling re-

sistance of the inside and outside surfaces, respectively. We consider

fouling resistances here as it is well known that the fouling process

of tube materials usually causes increase in thermal resistance. Sub-

stituting Eq.(5.15) back into Eq. (5.14) gives the area of outer tube,

from which we can calculate the length of tube as Lo = A/(2πro).
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If the size and type of exchanger are known, we can use NTU to deter-

mine the outlet temperatures. To do so, we first find the heat capacity

ratio Cr as

Cr =
min{ṁccp,c, ṁhcp,h}
max{ṁccp,c, ṁhcp,h}

. (5.16)

Because the size of exchanger is known, we can then calculate the

product of UA, and NTU using Eq.(5.7). Based on the flow config-

uration, we can determine the effectiveness ε using either Eq.(5.11)

or Eq.(5.13). With calculated ε, we further use Eq.(5.6) to determine

qnet, and ∆Tlm = qnet/(UA). As the final step, we use either Eq.(5.10)

or (5.9) to calculate Th,o based on preset Th,i, Tc,i and Tc,o.

5.4 Some Thoughts from a Newly-graduated Ph.D.

It is not hard to understand heat exchanger, but designing an

exchanger that fits engineering scenarios is always challenging. Let

me conclude by quoting some of the questions raised regarding

exchanger design in an email from a newly-graduated HVAC scien-

tist. These are what engineers talk about when they talk about their

passion for innovative exchanger design:

• What do we want to achieve (cooling the chips in the PC, freez-

ing food in the fridge. . . )?

• How will this device be used in real-life (outdoor/indoor, mo-

bile/stationary. . . )?

• Limitations and special considerations: Is there a space limita-

tion like the AC system in the car? Or it has to be super reliable

like coolers for the server/has high efficiency like new ACs to

meet the strict standards. . .

• and finally, what about the cost (initial and operating. . . )? are

there any trade-offs?

These interesting questions have demonstrated that the design and

application of heat exchanger is not, as of yet, a closed book.
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